Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Opt Express ; 32(2): 2245-2256, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297759

RESUMO

Fiber nonlinearity compensation (NLC) is likely to become an indispensable component of coherent optical transmission systems for extending the transmission reach and increasing capacity per fiber. In this work, we introduce what we believe to be a novel fast black-box neural network model based on the Fourier neural operator (FNO) to compensate for the chromatic dispersion (CD) and nonlinearity simultaneously. The feasibility of the proposed approach is demonstrated in uniformly distributed as well as probabilistically-shaped 32GBaud 16/32/64-ary quadrature amplitude modulation (16/32/64QAM) polarization-division-multiplexed (PDM) coherent optical communication systems. The experimental results demonstrate that about 0.31 dB Q-factor improvement is achieved compared to traditional digital back-propagation (DBP) with 5 steps per span for PDM-16QAM signals after 1600 km standard single-mode fiber (SSMF) transmission at the optimal launched power of 4 dBm. While, the time consumption is reduced from 6.04 seconds to 1.69 seconds using a central processing unit (CPU), and from 1.54 seconds to only 0.03 seconds using a graphic processing unit (GPU), respectively. This scheme also reveals noticeable generalization ability in terms of launched power and modulation format.

2.
Mol Ther Nucleic Acids ; 34: 102026, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37744173

RESUMO

Immunotherapy has become one of the most promising therapy methods for cancer, but only a small number of patients are responsive to it, indicating that more effective biomarkers are urgently needed. This study developed a pathway analysis method, named PathwayTMB, to identify genomic mutation pathways that serve as potential biomarkers for predicting the clinical outcome of immunotherapy. PathwayTMB first calculates the patient-specific pathway-based tumor mutational burden (PTMB) to reflect the cumulative extent of mutations for each pathway. It then screens mutated survival benefit-related pathways to construct an immune-related prognostic signature based on PTMB (IPSP). In a melanoma training set, IPSP-high patients presented a longer overall survival and a higher response rate than IPSP-low patients. Moreover, the IPSP showed a superior predictive effect compared with TMB. In addition, the prognostic and predictive value of the IPSP was consistently validated in two independent validation sets. Finally, in a multi-cancer dataset, PathwayTMB also exhibited good performance. Our results indicate that PathwayTMB could identify the mutation pathways for predicting immunotherapeutic survival, and their combination may serve as a potential predictive biomarker for immune checkpoint inhibitor therapy.

3.
ESC Heart Fail ; 10(5): 3038-3045, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562973

RESUMO

AIMS: Cardiomyocyte apoptosis is an important factor leading to the occurrence and development of heart failure (HF), which is associated with high mortality of patients with cardiovascular diseases. This study aims to investigate the underlying mechanisms of HF in terms of expression and regulation patterns using bioinformatics and experimental validation. METHODS AND RESULTS: Two HF datasets were collected: a dataset GSE112056 downloaded from the GEO database (including mRNA and miRNA sequencing data) and another is the laboratory-owned mRNA dataset. Differential mRNAs and miRNAs in the two datasets were screened using the raw Bayesian approach method. Gene Ontology was used to perform functional enrichment analysis of the differential mRNAs and co-expression network analysis of the differential mRNAs, combined with nuclear transcription factors in the differential miRNAs and mRNAs for target gene prediction. A HF cell model was constructed using mouse cardiomyocytes (HL-1), and the role and mechanism of miRNA-103-3p-Hlf (hepatic leukaemia factor) in the process of HF was verified by cell transfection, luciferase reporter gene, WB, and qPCR. We found that Hlf gene expression was decreased in the HF model group and strongly correlated with FYCO1 (FYVE and coiled-coil domain-containing protein 1) gene, a phenomenon enriched in apoptotic autophagy-related pathways. MiR-103-3p expression was up-regulated in the HF model group, and its targeting correlation with Hlf was confirmed by luciferase activity assay. In the HL-1 cell model, miR-103-3p significantly promoted apoptosis and inhibited autophagy in HL-1 cells (all P < 0.05), and overexpression of the Hlf gene reversed this phenomenon, inhibiting apoptosis and promoting autophagy in HL-1 cells (all P < 0.05). CONCLUSIONS: MiR-103-3p affects myocardial cells apoptosis and autophagy by targeting Hlf, playing as a potential therapeutic biomarker for HF progression.


Assuntos
Insuficiência Cardíaca , Leucemia , MicroRNAs , Animais , Humanos , Camundongos , Apoptose/genética , Autofagia/genética , Teorema de Bayes , Insuficiência Cardíaca/genética , Luciferases , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro
4.
Clin. transl. oncol. (Print) ; 25(6): 1793-1804, jun. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-221210

RESUMO

Background Long noncoding RNA (lncRNAs) GMDS-AS1 has been reported as a tumor regulator in tumor growth and metastasis, but its effect in hepatocellular carcinoma (HCC) remains unclear. ESET, a histone H3K9 methyl-transferase, is involved in epigenomic regulation of tumor progression in multiple cancers. However, the correlation between ESET and lncRNA in HCC is less reported. Methods Quantitative real-time PCR (qRT-PCR) was taken to determine the expression of ESET and GMDS-AS1. Western blot was taken to determine the target protein levels of ESET and GMDS-AS1. Online database and bioinformatics analysis were used to screen abnormally expressed genes. Luciferase assay was performed to confirm the binding of GMDS-AS1 and PSMB1. Ki67 and Edu were used for evaluated the proliferation of tumor cells. ChIP assay was performed to verify the relationship between H3K9me1 and lncRNA GMDS-AS1 promoter. Transwell was taken to determine the migration and invasion ability of tumor cells. CCK-8 was used for determining the viability of tumor cells. Flow cytometry was performed to detect the cell cycle of tumor cells. Results The expression of GMDS-AS1 was decreased and the expression of ESET was increased in HCC. GMDS-AS1 inhibition contributed to tumor development, and this effect was closely related to epigenetic inhibition of GMDS-AS1 by ESET. PSMB1, a downstream target of GMDS-AS1, promoted the tumor proliferation and was negatively regulated by GMDS-AS1. Conclusion Our result demonstrates anti-tumorigenic traits of lncRNA GMDS-AS1 in HCC and explains its pattern of regulation mediated by ESET. Our work unmasked an essential role of GMDS-AS1 in HCC progression and detected a novel pathway for ESET to promote HCC (AU)


Assuntos
Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Epigênese Genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Metiltransferases/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37165492

RESUMO

PURPOSE: Homocysteine (Hcy)-induced endothelial cell injury is a key event in atherosclerosis pathogenesis. In this study, we aimed to explore the mechanisms underlying Hcy-induced endothelial injury by assessing the effects of Hcy on endothelial cell proliferation and the microRNA (miR)-129-5p/fibroblast growth factor 2 (FGF2) axis. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with Hcy to construct an endothelial cell injury model. Expression levels of FGF2 in Hcy-induced HUVECs were determined using quantitative real-time polymerase chain reaction and western blotting. An FGF2 overexpression lentiviral vector was constructed to upregulate FGF2 expression in HUVECs via lentivirus transduction. A cell counting kit-8 assay was used to explore the effects of FGF2 overexpression on HUVEC proliferation. An upstream regulatory miRNA was predicted, and its target-binding relationship with FGF2 was evaluated using a dual-luciferase reporter assay. RESULTS: We found that FGF2 expression in HUVECs was inhibited by Hcy treatment. Lentivirus transduction led to the overexpression of FGF2 in HUVECs, which significantly reversed the effect of Hcy on endothelial cell proliferation. miR-129-5p was experimentally validated as an upstream regulator of FGF2, and its decreased levels in HUVECs led to increased FGF2 expression. In addition, HUVEC proliferation was enhanced by the knockdown of miR-129-5p, and this effect was reversed by Hcy treatment. CONCLUSION: Taken together, the results of this study revealed that Hcy inhibits FGF2 expression in HUVECs, and FGF2 is regulated by upstream miR-129-5p to improve the effect of Hcy on endothelial cell proliferation.

6.
Comput Biol Med ; 159: 106969, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105108

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic is still wreaking havoc worldwide. Therefore, the urgent need for efficient treatments pushes researchers and clinicians into screening effective drugs. Drug repurposing may be a promising and time-saving strategy to identify potential drugs against this disease. Here, we developed a novel computational approach, named Drug Target Set Enrichment Analysis (DTSEA), to identify potent drugs against COVID-19. DTSEA first mapped the disease-related genes into a gene functional interaction network, and then it used a network propagation algorithm to rank all genes in the network by calculating the network proximity of genes to disease-related genes. Finally, an enrichment analysis was performed on drug target sets to prioritize disease-candidate drugs. It was shown that the top three drugs predicted by DTSEA, including Ataluren, Carfilzomib, and Aripiprazole, were significantly enriched in the immune response pathways indicating the potential for use as promising COVID-19 inhibitors. In addition to these drugs, DTSEA also identified several drugs (such as Remdesivir and Olumiant), which have obtained emergency use authorization (EUA) for COVID-19. These results indicated that DTSEA could effectively identify the candidate drugs for COVID-19, which will help to accelerate the development of drugs for COVID-19. We then performed several validations to ensure the reliability and validity of DTSEA, including topological analysis, robustness analysis, and prediction consistency. Collectively, DTSEA successfully predicted candidate drugs against COVID-19 with high accuracy and reliability, thus making it a formidable tool to identify potential drugs for a specific disease and facilitate further investigation.


Assuntos
COVID-19 , Humanos , Reposicionamento de Medicamentos/métodos , SARS-CoV-2 , Reprodutibilidade dos Testes , Redes Reguladoras de Genes
7.
Clin Exp Hypertens ; 45(1): 2180019, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36860117

RESUMO

OBJECTIVES: The present study aimed to investigate the effect and mechanism of angiotensin II-induced ferroptosis in vascular endothelial cells. METHODS: In vitro, HUVECs were treated with AngII, AT1/2 R antagonist, P53 inhibitor, or their combinations. MDA and intracellular iron content were evaluated using an ELISA assay. The expression of ALOX12, P53, P21, and SLC7A11 were determined by western blotting in HUVECs and then confirmed through RT-PCR. RESULTS: As the concentration of Ang II (0, 0.1,1,10,100, and 1000uM for 48 h) increased, the level of MDA and intracellular iron content increased in HUVECs. Compared with the single AngII group, ALOX12, p53, MDA, and intracellular iron content in AT1/2R antagonist group decreased significantly. In pifithrin-α hydrobromide-treated, ALOX12, P21,MDA, and intracellular iron content decreased significantly as compared to the single AngII group. Similarly, the effect of combined use of blockers is stronger than that of blockers alone. CONCLUSIONS: AngII can induce ferroptosis of vascular endothelial cells. The mechanism of AngII-induced ferroptosis may be regulated through the signal axis of p53-ALOX12.


Assuntos
Araquidonato 12-Lipoxigenase , Ferroptose , Células Endoteliais da Veia Umbilical Humana , Proteína Supressora de Tumor p53 , Angiotensina II , Células Endoteliais , Ferro , Humanos
8.
Chem Commun (Camb) ; 59(13): 1813-1816, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722877

RESUMO

Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.

9.
Clin Transl Oncol ; 25(6): 1793-1804, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36737533

RESUMO

BACKGROUND: Long noncoding RNA (lncRNAs) GMDS-AS1 has been reported as a tumor regulator in tumor growth and metastasis, but its effect in hepatocellular carcinoma (HCC) remains unclear. ESET, a histone H3K9 methyl-transferase, is involved in epigenomic regulation of tumor progression in multiple cancers. However, the correlation between ESET and lncRNA in HCC is less reported. METHODS: Quantitative real-time PCR (qRT-PCR) was taken to determine the expression of ESET and GMDS-AS1. Western blot was taken to determine the target protein levels of ESET and GMDS-AS1. Online database and bioinformatics analysis were used to screen abnormally expressed genes. Luciferase assay was performed to confirm the binding of GMDS-AS1 and PSMB1. Ki67 and Edu were used for evaluated the proliferation of tumor cells. ChIP assay was performed to verify the relationship between H3K9me1 and lncRNA GMDS-AS1 promoter. Transwell was taken to determine the migration and invasion ability of tumor cells. CCK-8 was used for determining the viability of tumor cells. Flow cytometry was performed to detect the cell cycle of tumor cells. RESULTS: The expression of GMDS-AS1 was decreased and the expression of ESET was increased in HCC. GMDS-AS1 inhibition contributed to tumor development, and this effect was closely related to epigenetic inhibition of GMDS-AS1 by ESET. PSMB1, a downstream target of GMDS-AS1, promoted the tumor proliferation and was negatively regulated by GMDS-AS1. CONCLUSION: Our result demonstrates anti-tumorigenic traits of lncRNA GMDS-AS1 in HCC and explains its pattern of regulation mediated by ESET. Our work unmasked an essential role of GMDS-AS1 in HCC progression and detected a novel pathway for ESET to promote HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/patologia , Sobrevivência Celular , Metiltransferases/genética , Epigenômica , Proliferação de Células/genética , MicroRNAs/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética
10.
Environ Toxicol ; 38(4): 941-949, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36620907

RESUMO

This study mainly focuses on revealing the role of PLAGL2 in lung cancer stemness. In vitro and in vivo experiments were performed to evaluate the effects of PLAGL2 on lung cancer cell stemness. Mechanistic analysis using luciferase reporter and ChIP assays were implemented to reveal the underlying mechanisms. The transcriptional factor E2F1 transcriptionally activated PLAGL2 expression via directly binding to PLAGL2 promoter in lung cancer cells. Moreover, PLAGL2 promoted the stemness of lung cancer cells dependent on E2F1-mediated transcriptional activation. This study provides a potential target for lung cancer progression.


Assuntos
Proteínas de Ligação a DNA , Neoplasias Pulmonares , Humanos , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/genética
11.
Chemistry ; 29(5): e202202858, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36331543

RESUMO

Metal phosphides are promising noble metal-free electrocatalysts for hydrogen evolution reaction (HER), but they usually suffer from inferior stability and thus are far from the device applications. We reported a facile and controllable synthetic method to prepare metal-incorporated M-FeP nanoparticles (M=Cr, Mn, Co, Fe, Ni, Cu, and Mo) with the guide of the density functional theory (DFT). The evaluated HER activity sequence was consistent with the DFT predictions, and cobalt was revealed to be the appropriate dopant. With the optimization of the Co/Fe ratio, the Fe0.67 Co0.33 P/C only required overpotentials of 67 mV and 129 mV to obtain the cathodic current density of 10 and 100 mA cm-2, respectively. It maintained the initial activity in the 10 h stability test, surpassing the other Co-FeP/C catalysts. Ex situ experiments demonstrated that the decreased element leaching and the increased surface phosphide content contributed to the high stability of the Fe0.67 Co0.33 P/C. A proton exchange membrane water electrolyzer was assembled using the Fe0.67 Co0.33 P/C as the cathodic catalyst. It showed a current density of 0.8 A cm-2 at the applied voltage of 2.0 V and retained the initial activity in the 1000 cycles' stability test, suggesting the potential application of the catalysts.


Assuntos
Hidrogênio , Metais , Prótons , Cobalto , Água
12.
Kaohsiung J Med Sci ; 39(3): 254-265, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36524461

RESUMO

Hyperglycemia is the most important factor leading to the complications of type 2 diabetes mellitus (T2DM). The primary condition for the treatment of T2DM is to change the glucose and lipid metabolism disorders in the liver and other insulin-sensitive tissues. The current study aims to unearth the potential molecular mechanism of inhibiting liver gluconeogenesis to provide a new theoretical basis for the treatment of T2DM. High glucose (HG) induction of HepG2 cells followed by treatment with sequence-similar family 3 member D (FAM3D). Dual specificity phosphatases 1 (DUSP1), zinc finger protein 36 (ZFP36), salt-induced kinase 1 (SIK1), p-SIK1, posphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene and protein expression level were detected by quantitative real-time polymerase chain reaction and western blot. The PEPCK and G6Pase activities were detected by enzyme linked immunosorbent assay. Glucose production assay to determine glucose content. The RNA binding protein immunoprecipitation assay was used to detect the binding of ZFP36 to SIK1. FAM3D facilitated the expression of DUSP1 but suppressed the expression of gluconeogenesis-related factors in an HG environment. The expression of ZFP36 was up-regulated in an HG environment. ZFP36 could reverse the inhibition of gluconeogenesis caused by FAM3D. HG-induced upregulation of ZFP36 was downregulated by overexpression of DUSP1. ZFP36 bound to SIK1, and downregulation of ZFP36 promoted SIK1 expression and inhibits gluconeogenesis. Our study demonstrated FAM3D inhibited gluconeogenesis through the DUSP1/ZFP36/SIK1 axis in an HG environment, which provided a new theoretical basis for exploring the pathogenesis and treatment strategy of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Gluconeogênese , Humanos , Gluconeogênese/genética , Tristetraprolina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Citocinas/metabolismo
13.
Clin Med Insights Oncol ; 16: 11795549221116834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310733

RESUMO

Background: Next-generation sequencing (NGS) has been widely used to identify targetable variants for patients with solid tumors, especially lung cancer. Circulating tumor DNA (ctDNA) has emerged as an alternative approach for tumor biopsy. However, the feasibility of ctDNA in detecting molecular variants remains debatable. Methods: Herein, we performed NGS on matched tissue and plasma samples from 146 Chinese patients with lung cancer. The concordance of variants between tissue and plasma samples was explored at patient and variant levels. Results: More than 80% of patients harbored at least one concordant variant in tissue and plasma samples. A total of 506 variants were shared between tissue and plasma samples, and 432 variants were identified in tissue only and 92 variants were identified in plasma only. The sensitivity and positive predictive value (PPV) of all variants detected in plasma were 53.9% and 84.6%, respectively. High concordance was observed in several driver genes. In details, epidermal growth factor receptor exon 19 deletion (EGFR 19del), EGFR p.S768I, anaplastic lymphoma kinase (ALK) fusion, rearranged during transfection (RET) fusion, and kirsten rat sarcoma viral oncogene homolog (KRAS) p.G12C achieved a sensitivity of 90%, 100%, 85.7%, 100%, and 85.7%, respectively. Four EGFR-altered lung adenocarcinoma patients who underwent ctDNA-based NGS at initial diagnosis benefited from first-line gefitinib/icotinib with a median progression-free survival of 379.5 days. Conclusions: Our work provided the clinical evidence of feasibility of ctDNA-based NGS in guiding decision-making in treatment. ctDNA-based NGA could be a reliable alternative approach for tissue biopsy in patients with lung cancer.

14.
Curr Neurovasc Res ; 19(1): 108-116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35297350

RESUMO

BACKGROUND: MicroRNAs (miRNAs) may participate in the process of vascular calcification. However, the role of microRNA-17-5p in vascular calcification has not been clarified. In this study, we showed the effects of microRNA-17-5p on vascular calcification. MATERIALS AND METHODS: Vascular smooth muscle cells (VSMCs) were transfected with miR-17-5p mimics, a miR-17-5p inhibitor or negative control (NC) using Lipofectamine 2000. Then the cells were induced by an osteogenic medium. Alkaline phosphatase (ALP) activity and mineralization were determined. Osteocalcin (OC), bone morphogenetic protein 2(BMP-2), Collagen Ia (Colla), Runx2, and ankylosis protein homolog (ANKH) gene expressions were determined by reverse transcription-polymerase chain reaction. Vascular calcification was developed using a renal failure model. RESULTS: The ALP activity was increased when miR-17-5p mimics were transfected, whereas the miR-17-5p inhibitor reduced ALP activity (p < 0.05). The number and average area of mineral nodes in the miR-17-5p mimic group was larger than those in the corresponding control and NC groups (p < 0.05). The number and average area of the mineral nodes in the miR-17-5p inhibitor group were smaller than those in the corresponding control and NC groups (p < 0.05). Bmp2, OC, Col1a and Runx2 were higher in the miR-17-5p mimics group compared to those in the control and NC groups. ANKH expression was decreased in VSMCs with the miR-17-5p mimics and increased in VSMCs with miR-17-5p inhibitor. ANKH siRNA intervention also promoted mineralization. The miR-17-5p expression was upregulated and ANKH was down-regulated in the aortic arteries with calcification. CONCLUSION: Our data showed that miR-17-5p may promote vascular calcification by inhibiting ANKH expression.


Assuntos
MicroRNAs , Calcificação Vascular , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , MicroRNAs/metabolismo , Miócitos de Músculo Liso , Osteogênese/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Calcificação Vascular/metabolismo
15.
Inorg Chem ; 61(6): 2954-2961, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35104118

RESUMO

Iron phosphide nanoparticles (NPs) are promising noble metal-free electrocatalysts for the hydrogen evolution reaction (HER), but they usually show inferior activity due to the limited surface area and oxidative passivation. We reported a facile synthetic method to prepare FeP hollow NPs (HNPs) with various precursors. It was proven that the structural parameters (i.e., size, phosphating temperature, phase, and surfactant) of oxide precursors were correlated to the electrochemically active surface area (ECSA), phase purity, surface oxidation, and hollow morphology of FeP HER catalysts, thus affecting the HER activity. Among the three FeP HNPs, the 9 nm FeP HNPs prepared using the Fe3O4 precursor exhibited the highest overall activity with the lowest overpotential of 76 mV to drive a cathodic current density of 10 mA·cm-2 due to the highest ECSA, while 25 nm FeP prepared using the Fe2O3 precursor showed the highest turnover frequency because of the high phase purity and low surface oxidation degree.

16.
Front Cell Neurosci ; 16: 813084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197827

RESUMO

OBJECTIVE: To investigate the clinical features, risk factors and underlying pathogenesis of cancer related subarachnoid hemorrhage (SAH). METHODS: Clinical data of SAH in patients with active cancer from January 2010 to December 2020 at four centers were retrospectively reviewed. Patients with active cancer without SAH were matched to SAH patients with active cancer group. Logistic regression was applied to investigate the independent risk factors of SAH in patients with active cancer, after a 1:1 propensity score matching (PSM). A receiver operator characteristic curve was configured to calculate the optimal cut-off value of the joint predictive factor for cancer related SAH. RESULTS: A total of 82 SAH patients with active cancer and 309 patients with active cancer alone were included. Most SAH patients with cancer had poor outcomes, with 30-day mortality of 41.5%, and with 90-day mortality of 52.0%. The PSM yielded 75 pairs of study participants. Logistic regression revealed that a decrease in platelet and prolonged prothrombin time were the independent risk factors of cancer related SAH. In addition, receiver operator characteristic curve of the joint predictive factor showed the largest AUC of 0.8131, with cut-off value equaling to 11.719, with a sensitivity of 65.3% and specificity of 89.3%. CONCLUSION: Patients with cancer related SAH often have poor outcomes. The decrease in platelet and prolonged prothrombin time are the independent risk factors of cancer related SAH, and the joint predictive factor with cutoff value equal to 11.719 should hence serve as a novel biomarker of cancer related SAH.

17.
Gigascience ; 122022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38116825

RESUMO

BACKGROUND: Traditional approaches to drug development are costly and involve high risks. The drug repurposing approach can be a valuable alternative to traditional approaches and has therefore received considerable attention in recent years. FINDINGS: Herein, we develop a previously undescribed computational approach, called DrugSim2DR, which uses a network diffusion algorithm to identify candidate anticancer drugs based on a drug functional similarity network. The innovation of the approach lies in the drug-drug functional similarity network constructed in a manner that implicitly links drugs through their common biological functions in the context of a specific disease state, as the similarity relationships based on general states (e.g., network proximity or Jaccard index of drug targets) ignore disease-specific molecular characteristics. The drug functional similarity network may provide a reference for prediction of drug combinations. We describe and validate the DrugSim2DR approach through analysis of data on breast cancer and lung cancer. DrugSim2DR identified some US Food and Drug Administration-approved anticancer drugs, as well as some candidate drugs validated by previous studies in the literature. Moreover, DrugSim2DR showed excellent predictive performance, as evidenced by receiver operating characteristic analysis and multiapproach comparisons in various cancer datasets. CONCLUSIONS: DrugSim2DR could accurately assess drug-drug functional similarity within a specific disease context and may more effectively prioritize disease candidate drugs. To increase the usability of our approach, we have developed an R-based software package, DrugSim2DR, which is freely available on CRAN (https://CRAN.R-project.org/package=DrugSim2DR).


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Algoritmos , Antineoplásicos/uso terapêutico
18.
World J Emerg Med ; 12(3): 185-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141032

RESUMO

BACKGROUND: The dynamic monitoring of immune status is crucial to the precise and individualized treatment of sepsis. In this study, we aim to introduce a model to describe and monitor the immune status of sepsis and to explore its prognostic value. METHODS: A prospective observational study was carried out in Zhongshan Hospital, Fudan University, enrolling septic patients admitted between July 2016 and December 2018. Blood samples were collected at days 1 and 3. Serum cytokine levels (e.g., tumor necrosis factor-α [TNF-α], interleukin-10 [IL-10]) and CD14+ monocyte human leukocyte antigen-D-related (HLA-DR) expression were measured to serve as immune markers. Classification of each immune status, namely systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS), and mixed antagonistic response syndrome (MARS), was defined based on levels of immune markers. Changes of immune status were classified into four groups which were stabilization (SB), deterioration (DT), remission (RM), and non-remission (NR). RESULTS: A total of 174 septic patients were enrolled including 50 non-survivors. Multivariate analysis discovered that IL-10 and HLA-DR expression levels at day 3 were independent prognostic factors. Patients with MARS had the highest mortality rate. Immune status of 46.1% patients changed from day 1 to day 3. Among four groups of immune status changes, DT had the highest mortality rate, followed by NR, RM, and SB with mortality rates of 64.7%, 42.9%, and 11.2%, respectively. CONCLUSIONS: Severe immune disorder defined as MARS or deterioration of immune status defined as DT lead to the worst outcomes. The preliminary model of the classification and dynamic monitoring of immune status based on immune markers has prognostic values and is worthy of further investigation.

19.
Mol Ther Nucleic Acids ; 25: 37-52, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34168917

RESUMO

Hepatocellular carcinoma (HCC) belongs to the most frequent cancer with a high death rate worldwide. Thousands of long non-coding RNAs (lncRNAs) have been confirmed to influence the development of human cancers, including HCC. Nevertheless, the biological role of PRR34 antisense RNA 1 (PRR34-AS1) in HCC remains obscure. Here, we observed via quantitative real-time reverse transcriptase polymerase chain reaction (quantitative real-time RT-PCR) that PRR34-AS1 was highly expressed in HCC cells. Functional assays revealed that PRR34-AS1 promoted HCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process in vitro and facilitated tumor growth in vivo. In addition, western blot analysis and TOP Flash/FOP Flash reporter assays verified that PRR34-AS1 stimulated Wnt/ß-catenin pathway in HCC cells. Furthermore, RNA immunoprecipitation (RIP), RNA pull-down, and luciferase reporter assays uncovered that PRR34-AS1 sequestered microRNA-296-5p (miR-296-5p) to positively modulate E2F transcription factor 2 (E2F2) and SRY-box transcription factor 12 (SOX12) in HCC cells. Importantly, chromatin immunoprecipitation (ChIP) and luciferase reporter assays uncovered that E2F2 transcriptionally activated PRR34-AS1 in turn. Further, rescue experiments reflected that PRR34-AS1 affected HCC progression through targeting miR-296-5p/E2F2/SOX12/Wnt/ß-catenin axis. Our findings found that PRR34-AS1 elicited oncogenic functions in HCC, which indicated that PRR34-AS1 might be a novel therapeutic target for HCC.

20.
World J Clin Cases ; 9(5): 1016-1025, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33644165

RESUMO

BACKGROUND: Silicosis is a type of chronic pulmonary fibrosis caused by long-term inhalation of silica dust particles. There has been no ideal biomarker for the diagnosis and differential diagnosis of silicosis until now. Studies have found that elevated neuron-specific enolase (NSE) concentration in the serum of silicosis patients is helpful for diagnosis and severity assessment of the disease. However, the number of cases in these studies was not enough to arouse attention. AIM: To investigate the clinical significance of serum NSE in the diagnosis and staging of silicosis. METHODS: From January 2017 to June 2019, 326 cases of silicosis confirmed in Quanzhou First Hospital Affiliated to Fujian Medical University were included in the silicosis group. A total of 328 healthy individuals or medical patients without silicosis were included in the control group. Serum NSE concentrations of all subjects were determined by electrochemical luminescence. RESULTS: There were no significant differences in sex, age, smoking index and complications between the silicosis and control groups. The mean serum NSE concentration was 26.57 ± 20.95 ng/mL in the silicosis group and 12.42 ± 2.68 ng/mL in the control group. The difference between the two groups was significant (U = 15187, P = 0.000). Among the 326 patients with silicosis, 103 had stage I silicosis, and the mean serum NSE concentration was 15.55 ± 6.23 ng/mL. The mean serum NSE concentration was 21.85 ± 12.05 ng/mL in 70 patients with stage II silicosis. The mean serum NSE concentration was 36.14 ± 25.72 ng/mL in 153 patients with stage III silicosis. Kruskal-Wallis H test suggested that the difference in serum NSE concentration in silicosis patients in the three groups was significant (H = 130.196, P = 0.000). Receiver operating characteristic curve analysis indicated that the area under the curve was 0.858 (95% confidence interval: 0.828-0.888; P = 0.000). When the NSE concentration was 15.82 ng/mL, the Jorden index was the largest, the sensitivity was 72%, and the specificity was 90%. CONCLUSION: Serum NSE concentration may be a promising biomarker for the diagnosis and assessment of severity of silicosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...